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Closed, analytic expressions are obtained for the harmonic amplitudes which arise in the modulation
of unsaturated Lorentzian absorption lines. Exact formulas relating characteristics of the observed signals
(amplitude, width, slope ratios, etc.) to the true half-width for arbitrary modulation amplitude are derived.
The results of greatest experimental interest are graphed.

N the interpretation of magnetic resonance data 2ir/w. Writing H.-H 0 = Ha and Fourier analyzing g (1),
obtained with phase-detection techniques, it is

necessary to allow for the effect of modulation broaden- IHý
ing on the absorption lines. Several authors' have dis- g(l) =Tl 2- 1

(!Hi)'+ (H&TH. cosoi)'-
cussed this problem and supplied useful corrections to

observed quantities. These formulas, however, have H ,an
been either approximate or based on series expansions - Ea(H, H., Hs) cosnwi, (3)
whose convergence is slow in some regions of experi- 21r n-0

mental interest. The series in fact do not converge at where the integrals for the Fourier amplitudes
all over certain ranges of modulation amplitude. In
connection with an experimental program requiring a. (HI, H., Ha)
accurate corrections for large amplitude modulation, the
effect of modulation broadening on unsaturated Loren+ -' I cosnwlt
zian lines was calculated for arbitrary modulation am- = (w/i)_, 2(at (4)
pitiude. The results are in dosed form and are exact A~,,~i+HH. ow)
for the case of very slow sweep through the line.

Let Ha(t) be the homogeneous applied magnetic may be pert,.med by a standard technique of contour

field whose time dependence involves only the slow integration.2 Using phase detection of the fundamental,
linear sweep across an absorption line. Let H0 be the the recorded signal will be proportional to the Fourier
field at which resonance occurs, H1 the half-width coefficient ai. Since the integration may be performed
(distance between half-intensity points) of the true at once for all n, an expression for the amplitude of any
line, and H,. the amplitude of the sinusoidal modulation harmonic will be displayed. This is then specialized to
with circular frequency w. The normalized unsaturated the case of primary interest here, and the properties of
Lorentzian absorption line may be written ai further investigated.

I Define dimensionless parameters at and # where

g(H) =A-(½H)2+(H H)2, (1) a= (H,/Ha ) - oc <a< i3= (! 1/H.) 0<< #<

and under modulation a signal will be generated which (5)
is proportional to

and the auxiliary variables y, u, r, and 0, where

(½1H) 2+[Ha(t) +H. coswi-Ho" 7=J

The sweep rate is assumed to be very small so that u=y±+[,2 -4a 2] 2<u< o.
H.(1) remains essentially constant over a time interval

r= [u- 1- ul(u- 2) 1]- O<r<1, .

* This paper presents the results of one phase of research car-
red out at the Jet Propulsion Laboratory, California Institute arc cos'- v2a/u1} 0<0k<2r. (6) -
of Technology, sponsored by the National Aeronautics and
Space Administration.

I M. M. Perlman and M. Bloom, Phys. Rev. 88, 1290 (1952);
E. R. Andrew, ibid. 91, 425 (1953); R. Beringer anti J. G. Castlh, 2 1. M. Morse and If. IFeshach, etlelwds of Tiheortcal Plhysic es
ibid. 81, 82 (1951); 0. E. Myers and E. J. Putzer, J. Appl. Phys. (McGraw-Hill Book Company, Inc., New York, 1953), Vo' 1, •
30, 1987 (1959). p. 408.
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1709 MODULATION BROADENING OF LORENTZIAN LINES

The result of the integration for any n is
a. (H, H., Hs) = --2• •- -- [inr][r2+r2+2 cos2)r] sin - +1. (7)

where I0=I1=0,

12= 1,

z =r exp(4).

For the cases n =0, 1, 2 the general expression reduces to Setting the derivative (d/dH,) [(at),,] to zero, it

(L 2 \ further results that the maximum possible height of
a= (9) the peaks of a, occurs when 0= 1. On letting the sub-

H - u ,script m indicate fulfillment of this condition, the
following values are obtained:a=+(2 )2 (2,--u)l (10) a=::v

a1= * 2(u-2)4(u--3)' (0 =m-,,=V2 u,.=3

a2= 2 )s[1, ui(l+23"--2u)j" (H.) =Hi (Hs) +-iV3/2 (Hj)

± [1  (12-2u)]- (11) (ai),,•=-2(1/Hj)2. (18)

The detected signal, a['Hj, H., Hs(t)], is obtained These results are contained implicitly in Fig. 1. Quan-
by restoring the linear time variation of Ha, or equiva- tities corresponding to (Hs), and (a,), for an un-
lently, H,. The pertinent properties of the resulting broadened line would be the location (Ha),L and
curve, which is similar in shape to the derivative of the height (at)pL, of the peaks in the first derivative of a
Lorentzian curve, may be obtained by taking the pure Lorentzian curve. Calculation shows that
derivative (Hs) ,=3(H,)pL (ai),m=(4i/3V3)(al),L. (19)

i2•3"u(u2--u--23"u+33")
(da1 /dH,) =- (2/H.3) u t. (12) Another experimentally useful characteristic is the

ratio of maximum slopes of a,. Equating the second

Setting the factor (u--u- 2yus3-3) to zero generates derivative
relationships giving the location and amplitude of the d2a1 dHj2= + (6/H.)
two anti-symmetric peaks of a, for any modulation
amplitude. Letting the symbol for any quantity with a X(23"--u)[(_ -1_)u__ -(_-l)(1_-_-2)u_+4"(_-_-_)u--32]
suffix p attached denote that quantity evaluated at the (u-X2)(u--3)
peaks, these relations are (20)

(H,) ,= cet,,H= (a,/20) Hj, (13) to zero gives the possibilities
and u= 2-y, (21)

(a,) ,= ±E (2/H,)2 (u,-2) (14) or

lu,(2up-3)() (--1)u 3 -- (y-l) (1+2,y)u 2 +4-y(y--1)u--y 2 =(=. (22)

... (15) 2, -. 0

up= 2+4g#2 _W (16) is -8

Additional expressions, which often facilitate manipula- Z. 1.2- H
2 

.2.,-,/?.- -

tions, are..fo• :
U,(U' -- 1) 4a,2 U,2 4#f=3(a,--2)2 -

3 = 2u, --3 2u,-- 3 2u,--3 OA J ]

(17) 0 oo2 0, Q us 10 1.2 A . .6 . . 8 2.0
H./IH,,.

Figure 1 illustrates the dependence of the location and FI. 1. Dependence of the location (If), and height (a,), of
amplitude of the peaks on the modulation amplitude, the observed peaks on modulation amplitude.
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-- -- -- -- 40 which follow immediately from the definitions of y
and u. The slope ratio can then be found using Eqs. (12)

&2 and (23). Figure 2, showing how the location of outer
- a4 Z4 Zt maximum slope and the slope ratio depend on modula-

a- -t o tion amplitude, was constructed using this procedure.

E - Returning to the case when a, has maximum ampli-
-S _6 - tude, i.e., # it can be shown that Eq. (24) reduces to
L 0 0 u.1S--u..2+3u.,+5=O, (28)

0 0.2 4 0.6 0A 1.0 1.2 1.4 Is 1A 2.0

Swhere the subscript m means simply #=-I as before.

FIG. 2. Dependence of the location of outer maximum slope The only valid root of this equation is expressible as
(H.). and the ratio of maximum slopes on modulation amplitude. u. =1[5+8 cos i/6+* sin'(5/32) 1]3.9032, (29)

The first of these equations implies H/ =0 from the and the other quantities needed are given in terms of
definition of u. Evaluating Eq. (12), the inner maxi- u. by
mum slope of a, occurring at H& = 0 is in general, u,.- 5

dau/dHs Ii, ..o= -- 2(2/H1 ) 3 [f02/(1+1#) 1]. (23) 1890- 2(u 2.6888,2(u.,,--2)

The outer maximum slope is given by one of the roots
of the equation a,= q_|ur,,u.,--)1 ,., l 1.1995

(-y.- 1) u.-- (7y.- 1) (1+2-y.) us2+4,y.(.y.- 1)u,

-- 02= 0, (24) (H ,) . = a.,H (30)

where the subscripts indicates the value of a quantity (2L\= ( U •ust(um-2).(3u --5) (u.m-3)

at the place of outer maximum slope. It is quite cum- \d raH,= \/(U.M 2 4 +5)

bersome to extract this root straightforwardly, except ý_f0.31833 (2/Hj) .
for the case where 13= ½ which is discussed below. For
the general case, an indirect approach which proceeds
as follows seems most feasible. Treating Eq. (24) as a (dai/dHa)H1 .,o= - (4/5 (5) ] (2/H1 ):k
quadratic for y., it is solved to obtain --0.35777(2/H1 )3, (31)

U4.
"78=2(2u°4u+1) and so the slope ratio for 3=! is -1.1239. In com-

parison, the slope ratio is -4 for the derivative of the
X u,2+u.-4+(u.-2)(u.2-2u.+5)i[. (25) Lorentz curve.

After selecting a value for u., y. is fixed by this equation. ACKNOWLEDGMENTS
Then a8 and 0 are evaluated with the equations The author is indebted to Dr. A. F. Hildebrandt,

a2=!u(2,y-u) (26) Dr. C. A. Barth, and Dr. D. D. Elleman for an intro-duction to this problem and for discussions of its ex-
1= --1--a2 , (27) perimental significance.


